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Abstract: In this paper, we generalize a copula construction method discussed in one of our papers. For this purpose we 

consider the general form of a linear elliptic PDE. Indeed, a physical interpretation of elliptic equations comes from the notion 

of conservative flow given by a gradient. This notion provides a mathematical model for equilibrium conservation laws in 

linear behaviour. This can be applied to many areas of science. Thus, the aim of this paper is to construct a new class of 

bivariate copulas by solving an elliptic partial differential equation with a Dirichlet condition at the boundary. Copulas 

belonging to this class allow us to study the stochastic behaviour of the notion of conservative flows. In other words, these 

copulas will allow us to have an idea on the dependence of those physical phenomena which are governed by elliptic PDEs. 

For this purpose, we use a discretization method which is the finite difference method which is a common technique for 

finding approximate solutions of partial differential equations that consists in solving a system of relations (numerical scheme) 

connecting the values of the unknown functions at some points sufficiently close to each other. For the finite difference method, 

a mesh is made. This is a set of isolated points called nodes located in the domain of definition of the functions subject to the 

partial differential equations, a grid on which only the nodes of which the unknowns corresponding to the approximate values 

of these functions are defined. The mesh also includes nodes located on the boundary of the domain (or at least "close" to this 

boundary) in order to be able to impose the boundary conditions and/or the initial condition with sufficient accuracy. The 

primary quality of a mesh is to cover the domain in which it develops as well as possible, to limit the distance between each 

node and its nearest neighbour. However, the mesh must also allow the discrete formulation of the differentiation operators to 

be expressed: for this reason, the nodes of the mesh are most often located on a grid whose main directions are the axes of the 

variables. In the main results of this paper (see section 3), we give a discretization of the solution of the problem followed by a 

simulation with the MATLAB software of this approximated solution and presenting the discretization errors. 
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1. Introduction 

As announced in the introduction, this article draws on 

several works (see [6, 8, 10, 11, 14, 15]). In these different 

works we have some hints for the construction of copulas 

that we try to generalize in this paper. Copulas thus appear 

to be a natural tool for constructing multivariate 

distributions via Sklar's theorem when the marginal 



 American Journal of Theoretical and Applied Statistics 2021; 10(6): 257-261 258 

 

distributions are sfficiently regular. Sklar's theorem thus 

provides a canonical representation of a multivariate 

distribution, via the data of marginal distributions and 

dependency structure. The definition and properties of 

copulas are illustrated in [9]. In this paper, we will limit 

ourselves to two variables (dimension 2) for the sake of 

clarity and conciseness. In [10], We had already constructed 

a family of copulas using finite differences. This family 

being solution of a particular elliptic PDE (see [2]). But in 

this article, the copula family is a solution of an elliptic 

PDE in the general case. 

The aim of this paper is to construct a family of copulas C 

solution of an elliptic boundary value problem based on given 

finite diference scheme. Thus, this new class of copula 

solution of the boundary value problem is given by the 

following problem: 

(�):
���
��−
�� 
���
��(�, �)�� + ���(�, �) +���(�, �) + 	���(�, �)= �(�, �)	(�, �)�[0; 1]%�(�, 0) = 0 = �(0, �)�(�, 1) = �	�&
	�(1, �) = �

		    (1) 

where �, �, �	 are real number and C is a copula. �	 is a 

function defined on [0; 1]%. We notice that 
������
(. )� =(%(. ). �� is gradient of � in � direction and �) is gradient 

of � in � direction (see [7]). 

The boundary value problem described above can be 

thought of as a non-homogenous Dirichlet problem. The 

solution to this problem is not analytically known in 

general. An approximation is then made to reduce the 

problem to a finite number of unknowns (discretization 

process). We therefore introduce a mesh of steps h in the 

direction � and �. The nodes of the mesh are the points �*+ = ��* , �+�	 where the solution is approached. The 

following can be noted : �* = �ℎ, 0 ≤ � ≤ . + 1,	 the vertices of the mesh in the �-direction. �+ = /ℎ, 0 ≤ / ≤ . + 1,	 the vertices of the mesh in the �-direction. 

We are looking for an approximation of the equation at the 

nodes of the mesh: (�*+ , 1 ≤ � ≤ ., 1 ≤ / ≤ .) . The 

principle of the finite diference method consists in 

approximating the derivatives of a function by linear 

combinations of the values of this function at the points of the 

mesh. 

2. Preliminaries 

In the rest of the document, we will note I = [0,1]	�&
	1% = 1 × 1 = [0,1] 	× [0,1]. 
Definition 1 ( see [9, 12]) 

A copulas is a function �: 1% → 1  with the following 

properties: 

1. For every �, �	�	1, 
(1) �(�, 0) = 0 = �(0, �) 

(2) �(�, 1) = �	�&
	�(1, �) = � 

2. �  is 2-increasing, i.e for every �4, �%, �4, �%	�&	1  such 

that �4 ≤ �%  and �4 ≤ �% , we have (3) 56(7) =�(�%, �%) − �(�%, �4) − �(�4, �%) + �(�4, �4) ≥ 0  

where 7 is the rectangle [�1; 	�2] × [�1; 	�2]	and the 

expression (3) defines the �-volume of 7. 

According to sklar theorem (see [9], Theorem 2.3.3 ) with 

given :; ; and < defned as above, there exists a copula � 

such that for all =; 	>	�	ℝ@ ,  <(=; 	>) 	= 	�(:(=); ;(>))          (2) 

and conversely, for any copula �, the function	< defined with 

(2) is a joint distribution function with margins :(=)  and ;(>). The aim of this paper is to construct a family of copulas 

C using the concept of finite diference schemes. 

The finite diference method is one of the oldest methods of 

numerical simulation which is still used for some 

applications. This method appears to be the simplest to 

implement because it proceeds in two steps: on the one hand 

the discretization by finite diferences of the diferentiation 

operators, and on the other hand the convergence of the 

numerical scheme thus obtained when the distance between 

the points decreases. 

Definition 2 (see [4, 5, 13]) 

We called error of consistency of the numerical scheme AB�B = CB the vector ℇB(�)�ℝE defined by: 

ℇB(�) = AB�ΠB(�)� − CB where ΠB(�) = G�(=4)�(=%)⋮�(=E)I  (3) 

ΠB(�)	represents the projection of the exact solution onto 

the mesh. The scheme is said to be consistent for norm ||. || of ℝE if limB→N ℇB(�) = 0. If moreover there is a constant � 

independent of h such that: O|PB(�)|O ≤ �ℎQ 	                (4) ∀	S > 0, the schema is said to be of order p for the norm ||. ||. 
Usually we use the norms (see [1, 3, 15]) ||. || = ||. ||4, ||. ||%	U�	||. || = ||. ||V. 
Definition 3 (see [4, 5, 13])  

We will say that a scheme is stable for the norm ||. ||V, 

there exist a constant � > 	0 independant of ℎ such that:  ||�B||V = Sup* |�*| ≤ �             (5) 

3. Main Results 

Proposition 1 Let �, a copula, be the exact solution of the 

problem (1). Let be & ∈ 	ℕ,  we pose ℎ = 4E\4 and �*,+  is 

the desired approximate copulas of �(�ℎ, /ℎ), (�, /) ∈]1, … , ._%. We pose �*,+ = �(�ℎ, /ℎ), ∀, (�, /) ∈ ]1, … , ._%. (`) can be written as follows: 
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( B̀):
���
��
���N�*,+ − �4�*a4,+ − �%�*\4,+ − �b�*,+a4 −�c�*,+\4 = �*,+	�*,+ − �*,+a4 − �*a4,+ + �*a4,+a4 ≥ 0�N,+ = 0 = �*,N	�*,E\4 = �. + 1 	�&
	�E\4,+ = /. + 1	

																		(6) 

Where 

�N = cBe + �, �4 = 4Be + f%B, �% = 4Be − f%B , �b = 4Be + g%B and �c = 4Be − g%B	             (7) 

Proof. Each derivative is discretized according to its own 

direction, so by applying Taylor's formula in the �  and � 

directions, we have: 

�(� + ℎ, . ) = �(�, . ) + ℎ��(�, . ) + Be% ���(�, . ) + h(ℎ%)  (8) 

and 

�(� − ℎ, . ) = �(�, . ) + ℎ��(�, . ) + Be% ���(�, . ) + h(ℎ%)  (9) 

By summing up (8) and (9) we get: 

���(�, . ) ≃ l(�\B,.)a%l(�,.)\l(�aB,.)Be         (10) 

The relation (10) can be approached as follows: 

��� ≃ lmno,pa%lm,p\lmqo,pBe            (11) 

By a similar reasoning we obtain that: 

�)) ≃ lm,pnoa%lm,p\lm,pqoBe              (12) 

Let us now write second order approximation 

approximation of ��(�; 	�), By performing the subtraction 

between the relation (8) and (9) we obtain: 

��(�, . ) ≃ l(�\B,.)al(�aB,.)%B ≃ lmno,palmqo,p%B 	    (13) 

and 

�)(. , �) ≃ l(.,)\B)al(.,)aB)%B 	≃ lmno,palmqo,p%B 	    (14) 

By summing up the relations (11), (12), (13), (14) we 

obtain the desired results. 

4. Simulations 

We make in this part a simulation of the approached 

solution using the MATLAB environment. 

The figures below will concern: 

1 The numerical solution of the approximate copula C by 

finite diference. 

2 The Error of the discretization of the approximate 

copula. 

1) Let's suppose that �(�; 	�) 	= 	�	 + 	�	 + 	��, we get 

the following figures: 

 

 

Figure 1. Approached solution when .	 = 	50 and � = � = � = 1. 

The Figure 1 give us the approached solution of finite 

diference method (at Right) and the error of the estimation of 

our copulas (at Left). 

2) Let's suppose now f is the independant copula i.e �(�; 	�) 	= 	�� then get the following Figures: 

 

 

Figure 2. Approached solution when .	 = 	25 and � = � = 0	�&
	� = 1. 
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The Figure 2 give us the approached solution of finite 

diference method when .	 = 	25  and the error of the 

estimation of our copulas. 

3) Let’s suppose that � = 1, � = 1, � = 0  and �(�, �) = � + � , so the approched copulas and the 

the error of the dicretization is given by the following 

figures: 

 

 

Figure 3. Approached solution when .	 = 	32 and � = � = 1	�&
	� = 0. 
4) Now let’s suppose that � = 	� = � = 0  and �(�, �) = �� , the independent copulas, so the 

approched copulas and the error of the dicretization is 

given by the following figures:  

 

 

Figure 4. Approached solution when .	 = 	15 and � = � = � = 0. 
5) Let’s suppose that � = 10, � = 75, � = 50  and �(�, �) = min	(�, �), so the approched copulas and 

the the error of the dicretization is given by the 

following figures:  

 

 

Figure 5. Approached solution when .	 = 	150 and � = 10, � = 75, � =50. 
6) Let’s suppose that �  is a Gumbel Copula i.e �(�, �) = 	 wxay(a z{ �)|\(a z{ ))|)	}o/|	�

 (u,v) in 1%  and � ≥ 1. We get the following figures: 
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Figure 6. Approached solution when .	 = 	40 and � = 1, � = 1, � = 1,� = 3. 
When the infinite norm is not bounded then the relation (6) 

is not convergent i.e. (6) is neither stable nor consistent. This 

can be seen in the following figure: 

 

Figure 7. Gauss-Seidel iterations when .	 = 	10  and � = 10, � = 75,� = 50. 
In Figure 7, it is easy to see that ||�||V → +∞. so C is not 

bounded. 

5. Conclusion 

In this paper, we are inspired by paper [10], but generalize it 

by constructing a family of copulas as a solution of a linear 

elliptic PDE., by the finite difference method. This method 

gives an approached solution which converges to the exact 

solution of the boundary value problem. We use Matlab 

environment to make numerical simulations. 

 

References 

[1] Adams R. A., J. J. F. Fournier (2003), Sobolev Spaces. Oxford, 
Elsevier LTD, Academic Press. 

[2] Chervenov, Nikolay; Iordanov Iordan; Kostadinov Boyan 
(2018), n-dimensional copulas and weak derivatives. Serdica 
Mathematical Journal. 2018, Vol. 44 Issue 3/4, p 413-438. 26p. 

[3] Karl Friedrich Siburg and Pavel A. Stoimenov (2008), A scalar 
product for copulas. J. Math. Anal. Appl. 344 (2008) 429-439. 

[4] Gu Yan, Sun Hong Guang, A meshless method for solving 
three-dimensional time fractional difusion equation with 
variable-order derivatives, Applied Mathematical Modelling, 
ELSEVIER Volume 78, February 2020, Pages 539-549. 

[5] Hao Xia, Yan Gu Generalized finite difference method for 
electroelastic analysis of three-dimensional piezoelectric 
structures, Applied Mathematics Letters, ELSEVIER Volume 
117, July 2021, 107084. 

[6] Iordan Iordanov, Nikolay Chervenov (2015), Copulas on 
sobolev spaces. Comptes rendus de l’Académie bulgare des 
Sciences Tome 68, No 1, 2015. 

[7] Nagumo M. (1967), Lecture notes on modern theory of partial 
diferential equations, Moscow, Mir (in Russian). Academic Press. 

[8] Naoyuki Ishimura, Yasukazu Yoshizawa (2012), Evolution of 
multivariate copulas in discrete processes. Graduate School of 
Economics, Hitotsubashi University, Kunitachi, Tokyo 
186-8601, Japan. 

[9] R. B. Nelsen An introduction to copulas, vol. 139 of Springer Series 
in Statistics, Springer, New York, NY, USA, 2nd edition, 1999. 

[10] Remi Guillaume Bagré, Frédéric Béré and Vini Yves Bernadin 
Loyara, Construction of a Class of Copula Using the Finite 
Difference Method. Hindawi, Journal of Function Spaces, 
Volume 2021, Article ID 5271105, 8 pages. 

[11] Remi guillaume Bagré, Frédéric Béré and Abdoulaye 
Compaoré, finite element method used to approximate 
bivariate Copulas with non-homogeneous condition. Advances 
in Differential Equations and Control Processes, Volume 25, 
Number 2, 2021, Pages 231-243. 

[12] Remi Guillaume Bagré, Vini Yves Bernadin Loyara and 
Diakarya Barro, Spatial characterization of stochastic 
dependence using copulas. Far East Journal of Theoretical 
Statistics. Volume 58, Number 1, 2020, Pages 21-35. 

[13] Vincent Manet (2012), La Méthode des éléments Finis: 
Vulgarisation des aspects Mathématiques, Illustration des 
capacités de la méthode HAL-Archives ouvertes. 

[14] Yasukazu Yoshizawa and Naoyuki Ishimura (2011), Evolution of 
bivariate copulas in discrete processes. JSIAM Letters Vol. 3 (2011) 
pp. 77, Japan Society for Industrial and Applied Mathematics. 

[15] WILLIAM F. DARSOW and ELWOOD T. OLSEN (1995), 
Norm for Copulas. Internat. J. Math. and Math. Sci. VOL. 18 
NO. 3 (1995) 417-436. 


